MATH 121A Prep: Subspaces

Facts to Know:

Definition: Let V be a non-empty subset of \mathbb{R}^n . V is called a Subspace of \mathbb{R}^n if:

- (1) For every $\vec{v_1}, \vec{v_2} \in V$ we have $\vec{v_1} + \vec{v_2} \in V$
- (2) For every $\vec{v} \in V$ and $c \in \mathbb{R}$ we have $c\vec{v} \in V$

Examples:

1. Show that the line $V = \{(x, y) \in \mathbb{R}^2 : x + 2y = 0\}$ is a subspace of \mathbb{R}^2 .

2. Show that the plane $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ is NOT a subspace of \mathbb{R}^3 .

3. Let $A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 3 & 0 \end{bmatrix}$ and let $V = \{ \vec{v} \in \mathbb{R}^3 : A\vec{v} = \vec{0} \}$. Show that V is a subspace of \mathbb{R}^3 and find a vector that is in V and a vector that is not in V.